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Abstract

In this tutorial, we take the reader step-by-step through an implementation of so-called
“robust gradient descent” algorithms for use in training neural network models via the
technique of back-propagation. Concrete examples are provided throughout using Chainer,
a user-friendly framework for working with neural networks, and we have made a complete
implementation available at our online repository.*
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Notation

We use upper-case letters D, K, M, N, P, () for integer quantities of interest, and and lower-case
letters i, j, k, m,n, q,t for index subscripts. The lower-case letter [ is reserved for loss functions.
For any positive integer K, we denote the first K integers by [K] :={1,..., K}, and use I to
denote the K x K identity matrix. For a differentiable function f : RP? — R, we write V4 f(u)
for the vector of partial derivatives 0f/0x; evaluated at u for each j € [D].

1 Algorithmic differentiation (AD)

In most technical disciplines, one frequently has the need to compute how “sensitive” a par-
ticular quantity of interest is to changes in another quantity. Treating the former (say y) as a
smooth function of the latter (say x), written y = f(x), as any student of elementary calculus is
familiar, the derivative f’(-) is a fundamental tool when investigating such sensitivities. Adding
a small § to x, the difference is well-approximated by f'(2)0 ~ f(z + ) — f(z). Differentiation
is the process of obtaining f’, and of course subsequently evaluating it. Mathematically, this
can be done by a straightforward, mechanical process. In practice, since we often deal with
a tremendous number of variables of interest (both on the input and output side), often with
very complicated functional relations, we use computers to expedite the differentiation process.
Unlike idealized mathematical objects, computers have finite precision; the numerical accuracy
of the output, as well as the computational costs involved with achieving a certain precision
become important issues when considering which differentiation technique to use.

Here we consider one general strategy for implementing differentiation programs, typically
called algorithmic (or automatic) differentiation, abbreviated AD. In this section, using a few
simple examples, we introduce the basic approach taken by the techniques that fall under
the heading of algorithmic differentiation. A comprehensive introduction to this topic is well
beyond the scope of this tutorial. Interested readers are recommended to consult the lucid
introduction of Griewank and Walther [1], from whom we borrow some useful notational con-
ventions.

1.1 A concrete example to get us started

Instead of starting at a high level of abstraction and gradually making key concepts more
precise, let’s begin by diving straight into a simple example. Consider differentiation of the
real-valued function f defined below:

3
f(x1,29) = i sin(z1x2).
Z2
To evaluate this function, one is given x1 and x3, and to compute y = f(x1,x2) one does a
series of intermediate computations. For the first summand, we must calculate 3, and then
divide this by z5. For the second summand, first we multiply x1 by zo before passing the
product to sin(-). Adding these two terms gives the desired result.
Following the notation of Griewank and Walther [1], these intermediate steps can be made
explicit as follows in Table 1.
This is not the only order of operations by which one could implement the evaluation of this
function, but it works. This list of variables and calculations is called an evaluation trace by
Griewank and Walther [1]. A computational graph also provides a nice visual representation
of the intermediate calculations (Figure 1).



u_1 = I = 1.5000
uo = X9 = 3.0000
w = ud = 3.3750
U9 = u_1ug = 4.5000
us = uy/ug = 1.1250
ug = sin(ug) = —0.9775
us = wugt+ug = 0.1475
Y = us = 0.1475

Table 1: Evaluating the example function by hand.

9’

Figure 1: A computational graph for our evaluation of f(z1,x2) = o3 /2o + sin(x122).

Forward mode Our interest here is with differentation. Let’s consider computing the par-
tial derivatives. Starting from input x;, note that by taking the partial derivative of each
intermediate variable (u; with ¢ > 0) with respect to u_1 = x1, we can obtain dy/0x; via the
chain rule, as follows. Write u; = Ou;/0z1, and following the same sequence as the evaluation
trace we just saw, we compute the partial derivatives in Table 2.

U1 = = 1.0000
g = o = 0.0000
= 3uju_q = 6.7500
iy = U_1up = 3.0000
3 = U1t-1/uo = 2.2500
Uy = cos(ug)tlati_1 = —0.6324
U5 = Ugl-q +Usu = 1.6176
7 = U = 1.6176

Table 2: Evaluating the forward mode partial derivatives by hand.

Readers can check for themselves that § := Jy/dx; = 45 is actually mathematically valid;
all we are doing is making repeated use of the chain rule. Most importantly, note that for
any i > 0, as long as we have computed the intermediate function values (i.e., the uj,us,...)
and the preceding variables @_1, iy, . . ., %;—1, we always have enough information to compute
u;. This approach of sequentially computing partial derivatives of intermediate variables with



respect to the input variables is called forward mode algorithmic differentiation.

Note that in each step computing the 7; values, compared with the corresponding step for
u;, there may be more operations (e.g., one extra multiplication in 74 compared with wuy), but
this number will only be at most a small multiple of the original number of operations, and
most importantly, the number of steps is the same. As such, computing ¢ will be on the same
order as computing y, namely doing function evaluation. Furthermore, the forward mode can
be quite advantageous in cases where there many more outputs than inputs. In the above
example, we only have one output variable y, but consider the generalized case where we have
many outputs, say y = (y1,...,ym) where each y; = ajus + bjus for some scalars a; and by,
with j = 1,..., M. To compute all of the 91, ..., 9 values requires simply computing

yj = ajugﬁ_l + bj?l4ib_1
foreach j = 1,..., M. That is, even if M is on the order of millions, as long as we compute the
sequence up to 4 once, we can re-use these variables for all the outputs, making the difference

between computing y itself and dy/Ox; minuscule. The exact same statements apply for
differentiation with respect to the other input x».

Reverse mode In the “forward mode” approach described above, we fix an input, and
consider the impact that this fixed input has on all the intermediate variables. In contrast to
this, reverse mode algorithmic differentiation starts by fixing an output variable, and proceeds
to compute the impact that each intermediate variable has on this fixed output. In the special
case where our output is real-valued, i.e., y € R, then the “choice” is trivial. Using y to denote
our output of interest, define u; = 9y/0u;, called the adjoint variable, for each step in the
evaluation trace. The computation of partial derivatives in perhaps less intuitive than in the
forward mode case, so let us take this step by step. First, we have

y=1.0
us =y
as a seed to get the ball rolling. For w4, note that y only depends on u4 via us, meaning that
we can compute this as

_ 9y dus
- aZL5 8U4

via the chain rule and the fact that dus/0usy = 1. The exact same argument holds for us,
yielding

Ui = s

U3 = is.

For us and w7, note that y only depends on these variables through u4 and ug respectively, so
in an analogous fashion we have

Uy = @% = U4 COS(’LLQ)
aU4 3u2
Oy Ouz  _
'S Sus Oy us/uo.

Finally we reach the input variables. As y depends on ug only through us and us, we have
_ Oy Oug Oy Ous
Uy = 7o + o
8U3 8U0 8U2 8UQ
(—Dus

= us 3 + u2u_1.
Up




In the same way, for u_; which impacts y only through us and u;, we have
oy w0y ou
N 8UQ 8u_1 8U1 au_l

= UgUg + ﬂ13u2_1.

U1

Summarizing these steps as before, we have partial derivatives as in Table 3.

y = O0y/oy = 1.0000
is = 7 = 1.0000
4, = s = 1.0000
iy = s = 1.0000
U9 = uycos(ug) = —0.2108
= u3/uo = 0.3333
G = @60t duy = 06912
iy = @uojral?)u?_l = 1.6174

Table 3: Evaluating the reverse mode partial derivatives by hand.

Just like in the forward case, we make use of the intermediate values uy,us, ..., and we make
use of recursive definitions. That is, starting from us, as long as we have descended as far as
us—;, we always can compute one step further down, namely u5_(;41).

As seen in the forward mode approach, while we may have some extra computations at
each step, the number of steps is the same as when evaluating the value of y itself. A distinct
difference with the forward mode case is that running the reverse mode procedure above, we
obtain both the partial derivatives, since ug = 0y/0xy and u_; = dy/0z1 by definition. If there
are multiple outputs, however, this procedure will need to be repeated for each. In contrast, the
forward mode procedure only resulted in one partial derivative, namely y = 0y/0x1, although
as described, it can be very efficient when there are many more outputs than there are inputs.
The strength of reverse mode algorithmic differentiation becomes salient in the case where we
have many more inputs than we do outputs. For example, consider a simple modification of
the function f(z1,z2) above, where our inputs are denoted 1, ...,z z/, 1 and the variables
x1 and xo become intermediate variables defined by

M
/
z =114
j=1
1
L2 = Tp41

where we imagine that M is some very large integer. Note that even with large M, the
computations from us down to u%; are identical with the original two-dimensional case above.
The only new costs come in the final steps, namely

dy Oy Oug
Oxhypy  Oug Oy,

y dy Ou_1 _ u_q
= = U_
8£U;» Ou_1 ax; )

for each j = 1,..., M. Writing ' = (1,...,2%,,,), note that the difference between com-
puting y as a function of ' and computing the gradient dy/d«’ is minuscule. Thus, when we



have real-valued functions (such as loss functions to minimize) depending on a large number
of initial inputs, a reverse mode strategy is often the method of choice, as we shall see in later
sections.

1.2 Layered composition and matrix multiplication

In the previous section, all the intermediate variables were scalar-valued. There are some
cases, however, where it pays off to bundle up these scalars into a vector to take advantage of
fast libraries for multiplying matrices, especially when some of these matrices contain many
zero-valued entries.

As an example, assume we have an input & € RP0 which is passed through K functions,
say fi : RPs=1 — RP* for k € [K]. Writing y = f(x), since the mapping takes the simple form
f = fko- o f1, the intermediate variables can be simply written as

uyg =&

up = f1(uo)

urg = fr(ug—1)
Yy=ug.

Based on this special structure, one can implement forward mode algorithmic differentiation
in a straightforward way using a series of matrix multiplications. First, observe that using the
chain rule,

Dy

3uk,j _ 8uk7j auk_Lq

8:132- g=1 auk_Lq aZL‘Z

for each k € [K], each j € [Dy], and each i € [Dq]. Thus, writing U, = dug/dx (shape
Dy, x Dy) and defining another Jacobian matrix for the map wug_1 — uy as Jp = dug/Oug_1
(shape Dy, x dj_1), we obtain a convenient recursive relation as

Uk = JkUk—l-

Using Uy =1 D, as the base case sets the computation in motion for obtaining the desired
Oy/0x = U.

The reverse mode approach can be done in a similar manner using the structure of this
special case. Using the chain rule once again, we have

Dy
Oyi 0yi  Oupyig
Qurj 1 Oukyrg Ouk

for each k € [K], j € [Dy], and i € [Dg]. This means that writing U, = dy/0uy, (shape
Dk x Dy), we can utilize the recursion

U = Jio41Up 1

for each 0 < k < K — 1. To start the computation, one uses Uk = Ip, as a seed, descending
to the desired dy/0x = Uy.



Beware of naive vector bundling Recalling our original example of f(x1,z2) = z$/x2 +
sin(zjx2) from the previous section, one might be inclined to package up the intermediate
scalar variables into vectors of variables that can be computed simultaneously. Considering
the dependencies, we could re-write the evaluation trace as

vo = (u—1,uo)
v = (u1,u2)
vy = (u3, u4)
V3 = V2,1 + V22

Yy = Us.

Indeed, it is clear that when trying to evaluate y = f(x1, x2), evaluation in this order is perfectly
legitimate, note that this does not have the layered structure of the previous f = fro---0 fy
example, and a naive approach using matrix multiplication will lead to computational results
that are mathematically incorrect. For example, note that the correct answer for say dus/dxo
is of course

3

OQug w1y
- 2 27

Oz ug x5

while a naive application of the recursion described above for the special layered composition
case would lead to

Ous _ OusOur | DuzOup _
Oxo  Ouy Oxo  Oug Oxe 3

whenever x1 # 0. This is because the “chain rule” used here is not actually valid, leading to a
result which is computable, but not mathematically correct. We are simply stating the obvious
here by saying that one must be careful that the chain rule be used correctly. The recursive
relations defined above for the layered case are appealing, but cannot be used as-is in more
general settings, as this simple example shows.

2 AD and machine learning

In the previous section, we gave a brief introduction to the core ideas underlying algorithmic
differentiation. These techniques are, of course, extremely general-purpose, and can be used
in any discipline where numerical sensitivities are of academic or practical interest. Our in-
terest here, however, is one very specific application: learning algorithms for training machine
learning models. Here we formulate a typical learning problem, and highlight the role that AD
techniques can play.

2.1 A simple learning model

Consider a typical supervised learning task, where the goal is to reliably predict some response
y given an input x. One has a predictor h(z;w) parametrized by a vector w € R, and
access to a collection of data (x1,v1),..., (&N, yn). Based on this data, the goal is to choose a
good w such that the approximation h(x;w) ~ y is “good enough.” How do we measure this
approximation, and determine what is good enough? It is typical to introduce a loss I(w; x, y)
which grows as the approximation of y made by h(x;w) worsens. The simplest example is
the squared error I(w;x,y) = (h(x;w) — y)?, but countless other ways of passing “feedback”



to the learning machine are possible. The canonical learning strategy is called empirical risk
minimization (ERM), where one takes any w minimizing the sample mean of the losses, namely

N
. 1
WgRM € arg min — Z l(w; @i, y;).
w  NiH
Of course, this minimization must be implemented in practice. Steepest descent methods
are popular in the machine learning community, where one iteratively updates the parameter
vector as

N
Q@
Wpi1) = W) — > Vwl(wy; @i, i),
i=1
where a > 0 is a step-size parameter, and the update direction is the negative gradient of the
ERM objective function. Linking this up to our AD introduction above, we have an objective
function L depending on the data and our model parameters, written explicitly as

1 N
L(wvwlvyla"'vaayN) = NZZ(UJ?wmyZ)
i=1

The steepest descent update given above has us taking partial derivatives with respect to
some, but not all the independent variables of this function. The update direction at step t
is —VuwL(wyy,y1,...,TN,YN), & vector containing D partial derivatives, with the variables
x; and y; for i € [N] left fixed. In the special case of a linear model h(z;w) = x?w, then
computing the gradient is usually very easy. In the case of the squared error, then the loss
gradients take the form Vl(w;x;,y;) = —2(y; — w’x;)x;, and thus manually implementing
ERM by steepest descent is easy. As such, in this special case, the use of the AD techniques

described above will not be necessary.

2.2 A more expressive model

In many situations, we will not be satisfied with a simple linear model. While countless
non-linear models exist, as a well-known concrete exnample, here we formulate a traditional
neural netwoork model, largely following the notation of Ripley [5]. This model is composed
of computational units, which are fed real-valued outputs from other units, and which produce
real-valued outputs themselves. More concretely, signals throughout the network are defined
by

Ty = Z WijYi

i—]
y; = fi(z;)

where x; and y; are respectively the input and output of the jth unit. Summation “¢ — j”
means summing over all units ¢ which feed to unit j. Each computational unit is completely
specified by the activation function f; (assumed differentiable) and weights w;;. Let V denote
the index of all units, and let e;; be the indicator of {“unit ¢ feeds unit j”}, and fix w;; = 0
whenever ¢;; = 0. To capture the inputs and outputs of the network as a whole, the network
has both input units (which feed other units, but are fed by none) and output units (which
feed no units, but are fed by other units).

The “layers” of a network can be captured as subsets Vo, Vi,...,Vx C V. Let Vj denote
the input layer, composed of only input nodes, i.e., for j € Vp, e;; = 0 for all ¢ # j. Let Vg



denote the output layer, i.e., for j € Vi, e;j; = 0 for all i # j. The inputs to the network as a
whole constitute the inputs to the input layer, and the outputs of the network as a whole are
the outputs of the output layer. To make things as clear as possible, we consider the special
case of feed-forward neural networks, where units only feed their outputs to higher layers, i.e.,
for any k and all j € Vi, we have ej; = 0 whenever i € V,,, for m < k. The fully connected
feed-forward network is a special case in which for each k, all units in V; feed to all units in
Vi+1, and to no others. When a unit in Vj feeds a unit in layer Vi1 o or higher, we call this a
skip-layer connection. In what follows, we simply make the assumption that the connections
are feed-forward in nature.

Training this network amounts to setting the weights w;;, and using the ERM by steepest
descent approach discussed above, we require partial derivatives of the objective L with respect
to all of the w;;. How should we go about computing these partial derivatives? Let us illustrate
a natural strategy which has been re-discovered many times in the literature. First, note that
for any weight wj;, its impact on L is only through z; = >, ; wi;y;. Thus, leaving all other
variables fixed, we have that

oL 9L Oz,
Owij - al’j Owij
= 05Y;

where 6; = OL/0x; is for readability. Thus, if we know ¢;, and we have evaluated the function
up to y;, then we can compute the desired partial derivative with respect to w;;. This holds
for any of the weights. The challenge, of course, is obtaining d;. Noting that any unit input
xj only impacts L through y;, namely after being passed through f;. As such, one can write

_ OL 9y;
N ayj axj

_OL
- 3yjfj($3)-

dj

Since the f; are something that we design, and z; is computable, in order to obtain §;, it
remains to obtain dL/0y;.

Fortunately, obtaining the L/0y; can be done in a systematic way. For units in the output
layer (j € Vi), then 0L/0y; can be obtained directly based on knowledge of the loss I(w; x, y)
used in the definition of L. For other units, we can recover the quantity of interest in a recursive
manner, as follows. Since any y; can only impact L through the units to which it is fed, we

can write
oL oL Oy
OL Oyy, Oxp
= Z OpWik
k:j—k

where by “k : j — k” we mean all nodes k that are fed by unit j. This means that for the
intermediate units, we have

8; = fi(z;) Y Spwyp.

k:j—k



All that is required, then, is to “descend” the network structure, starting with the ¢; for units
in j € Vi, next tackling 6; for all the units that feed the units in Vi, and so on.

The technique of re-using the partial derivatives taken with respect to inputs, namely “the
deltas,” was popularized as the generalized delta rule by Rumelhart and McClelland in the
mid-1980s. See, for example, Rumelhart et al. [6, 7]. Using this approach, we can compute the
gradient of the loss V,l(w;x;,y;) for any data point ¢ € [n], and thus can readily implement
ERM using steepest descent as introduced before. Since we start at the output layers, and work
our way backwards, this technique for computing the gradients is often called back-propagation.
Computing all the outputs y; is typically called a forward pass, in contrast to a backward pass
in which we compute the deltas and all quantities relevant to obtaining the partial derivatives.

Linking this up with AD Having seen a textbook example of back-propagation used
in training a neural network, recall the simple example of section 1.1, and note that back-
propagation can be readily interpreted as a special case of reverse mode AD. Observe the
following correspondences:

o Function of interest: f(z1,22) <+ L(w;x1,y1,...,ZN,YN)
o Input variables of interest: (z1,z2) <> w.
o Intermediate variables: uq,...,us < all unit inputs z;.

With the above connections clear, note that the back-propagation differentiation strategy starts
from the intermediate variables x; closest to the final output value L, computing 6; = 0L/0x;
which will be re-used in a recursive procedure to eventually get to the bottom of the recursion.
This is fundamentally the same as what we do in reverse mode AD, where we re-use partial
derivatives with respect to the intermediate variables.

3 Using Chainer to expedite the AD process

Both in the generic setting of section 1, and the machine learning setting of section 2 where we
looked at back-propagation, we saw via a handful of simple examples how the basic strategy
of algorithmic differentiation works. While the core approach is clear, actually implementing
such a procedure for any particular problem requires a substantial amount of effort. Es-
pecially in machine learning, where researchers want to quickly develop and test a variety
of model/algorithm prototypes, spending too much time on computing gradients will stymie
progress.

Fortunately, there exist high-quality open source libraries which have AD functionality out
of the box. In this tutorial, we elect to use Chainer, a Python-based platform for implement-
ing a wide variety of machine learning methods falling under the broad category of “neural
networks.” While alternatives such as TensorFlow, PyTorch, and Caffe are more well-known
globally, Chainer is extremely easy to use, has a very elegant design, and the flexibility to han-
dle all manner of models and learning algorithms included in other libraries. It also comes with
support for multi-GPU hardware setups to take advantage of GPU-based acceleration. The
core concept driving Chainer is a “Define-by-Run” strategy, in which the network is defined
dynamically during forward pass computations.?

2Chainer documentation: https://docs.chainer.org/en/stable/.
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import chainer.functions as cfn
import chainer as ch
import numpy as np

# Block (4): (function evaluation)

x1 = ch.Variable(np.array([1.5], dtype=np.float32))
x2 = ch.Variable(np.array([3.0], dtype=np.float32))
ul = x1%x*3

u2 = x1*x2

ud = ul/x2

u4 = cfn.sin(u2)

ub = u3+u4d

# Block (B): (reverse mode AD by hand)
ub5 = ch.Variable(np.array([1.0], dtype=np.float32))

ub4 = ubb

ub3 = ubb

ub2 = ub4dx*cfn.cos(u2)
ubl = ub3/x2

xb2 = -ub3*ul/x2**2 + ub2*x1
xbl = ub2*x2 + ubl*3*x1**2

# Block (C): (reverse mode AD using Chainer)
ub.backward(retain_grad=True)

Listing 1: Example code for a demonstration of Chainer’s reverse mode AD faculty.

3.1 Implementing our first example

Recall our initial example from section 1.1, where we considered using AD to obtain partial
derivatives of the function f(z1,z2) = 23 /w2 +sin(z122). Let’s try using Chainer to implement
this. First, let’s do the function evaluation in a step-by-step manner, making the intermediate
variables explicit (initialized with z; = 1.5, 29 = 3.0), as shown in Block (A) of List 1. The
resulting computational graph as generated by Chainer is given in Figure 2. The structure of
the graph is exactly as we would expect.

Next, consider computation of partial derivatives. Following the reverse mode AD described
in section 1.1, we can easily compute the u; values using the code given in Block (B) of List
1. On the other hand, Chainer’s AD faculty allows us to compute all of these partial gradients
with one line of code, as shown in Block (C) of List 1.

As should be evident, the critical method attached to Variable objects is called backward,
which recalling the terminology of section 2, does a “backward pass” over the function of
interest, computing the partial derivatives with respect to all the intermediate variables, and
storing them conveniently in the grad attribute of the various Variable objects defined above.?
For example, to get 42, one need only inspect the contents of u2.grad. Printing out the results

3The option retain_grad asks Chainer to store the intermediate gradients. More often than not, all we’ll
need is x1.grad and x2.grad, in which case retain_grad should be False (the default) to save memory.
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(3]

Figure 2: Computational graph generated automatically by Chainer. Compare with hand-
drawn graph in Figure 1.

of our hand-implemented computations versus the Chainer-computed values, we have results
as follows:

ub5 = 1.0000 vs. ub.grad = 1.0000
ubd = 1.0000 vs. ud.grad = 1.0000
ub3 = 1.0000 vs. u3.grad = 1.0000
ub2 = -0.2108 vs. u2.grad = -0.2108
ubl = 0.3333 vs. ul.grad = 0.3333
xb2 = -0.6912 vs. x2.grad = -0.6912
xbl = 1.6176 vs. xl.grad = 1.6176

That is, the results are identical, strongly suggesting that Chainer is indeed computing the
quantities we expect it is computing.? Using Variable objects is essentially the same as using
NumPy arrays, except with the added functionality that a computational graph is managed
in the background by Chainer. This becomes especially useful when it comes to obtain partial
derivatives; all we have implemented is the forward pass computations, while the backward
pass is handled on the backend. Even in an example as simple as this, instead of writing seven
lines of code to get down to xbl and xb2 (i.e., u_1 and wg), using Chainer it takes only one
line. Even more importantly, the seven lines written in the hand-built case, while simple, still

4Note that there is a minor numerical difference between the final partial derivative and the one obtained in
Table 3; the reason for this is due to rounding differences. In the computations for Table 3, we round to four
digits for all computations, whereas the computations done here are done with full 32-bit precision, and the
rounded intermediate results are displayed here.
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require some mental effort to obtain in the first place; removing the burden of this task is
critical for streamlining workflows involving differentiation.

3.2 Neural networks and aggregation

Let us now consider a Chainer-based implementation of a feed-forward neural network, as
discussed in section 2. This will give us an opportunity to see some new features of Chainer,
and identify the faculties that will particularly important when designing new algorithms.

As a simple example, let us consider the fully-connected case to start. For the kth layer,
write yj to denote a vector including the outputs of all the units i € V.. Write Dy = |Vj| for
the number of units in this layer. We can formulate the relationship between the kth layer and
the layer before it as follows:

Jr ((wr1, Ye—1))
Yr = [(Wryp—1) = :
fr ((wk,Dwykq))

Here W}, is a Dy x Di_1 matrix which controls the signals fed into the units of the kth layer.
We have used wy, j to denote the jth row of W, and when we write fi(Wyyr—1), note that it
is applied element-wise. We have matrix multiplication followed by an element-wise activation
function, and this sort of operation is stacked to obtain yg — y; — --- — yg, the final
network output. Thus, to implement a neural network, it is sufficient to implement these
two operations.” In the remainder of this section, we look in detail at how to implement a
Yp_1 — Wiyi_1; implementing f; can be done following a perfectly analogous process.

Implementing computational nodes In our previous example, we just used simple op-
erators such as +, /, *»*, and so on. Computation of the sensitivities of interest was done
without any specification of the actual form of the intermediate partial derivatives (in contrast
to the hand-built case). This was possible because Chainer handles the backward pass over
these simple operations for us. What about custom functions? Handling matrix multiplication
Yr_1 — Wryp_1 is no problem for Chainer, but for example, the activation function fi could
certainly be something unique that is not included in the library. Fortunately, integrating
customized operations with built-in operations is extremely easy, and the core role is played
by FunctionNode objects.

A FunctionNode in Chainer is, quoting the documentation, a “node in the computational
graph” which corresponds to “an application of a differentiable function to input variables.”
The basic flow is to pass an “input” in the form of a Variable object to a FunctionNode
object, applying it with the method apply (). The first thing that applying this function does
is, of course, computation of the output of the function based on the inputs given, i.e., the
forward pass computations. In addition to this, it critically adds backward-reference edges on
the computational graph between the input node, the function node, and the output node; this
is critical for the backward pass over a series of computations, and is fortunately all handled
on the back end.

To implement a FunctionNode child class is very easy: all we need to make explicit is the
forward- and backward-pass computations. For the matrix multiplication operation of interest,
we define a class LinearFunction which inherits FunctionNode. This is basically a simplified
version of the same implementation in the Chainer source. Details are in the supplementary
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def forward(self, inputs):
if len(inputs) ==
x, W, b = inputs
else:
(x, W), b = inputs, None
y = x.dot(W.T)
if b is not None:
y t=b
self.retain_inputs((0,1,2))
else:
self.retain_inputs((0,1))
return (y,)

Listing 2: Forward pass of a vanilla linear node.

demo notebook, but the important elements of the forward pass are given in List 2.

As should be clear, this is simply a generic map y = Wx + b, where W has dimensions
Q@ x P, and row vectors wy, ..., wq. Here every variable involved in the function in included
in the argument inputs. The retain_inputs() method indicates which indices of the inputs
should be stored for use in the backward pass computations. The backward pass is implemented
in a method called backward, with the key elements given in List 3.

Breaking down the backward pass There are a number of things that must be commented
on and elucidated here. Let us take them one at a time. First, defining a backward pass
operation in Chainer is straightforward because there are clear rules for what this function
must compute, and the output it should produce. We describe some key points:

e The indices here corresponds to the tuple given to retain_inputs() in the forward
pass definition.

o If the forward pass implements y = f(x), with € R” and y € R?, then backward(),
given grad_outputs (denoted v = (y1,...,7¢Q)) must output A = (A1,...,Ap), with

Q

é?yj .
= 5 P.
A ;8%% i€ [P]

e If there are multiple inputs, then the above partial gradient computations must be done
for each, and stacked into a tuple to be returned.

e The shape of output A must match the corresponding input. Thus if  is P x 1, then A
must also be P x 1.

The rules above are clear enough; let’s make sure we understand exactly what is happening in
this implementation, and how we should interpret the outputs. The @ mark is a binary operator
for matrix multiplication using Variable objects. The core computations are obviously being

® A useful introduction to defining custom functions in Chainer is available: https://docs.chainer.org/en/
stable/guides/functions.html.
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def backward(self, indices, grad_outputs):
if len(self.get_retained_inputs()) > 2:
X, W, b = self.get_retained_inputs()
else:
x, W = self.get_retained_inputs()
gy = grad_outputs[0]
out = []
if 0 in indices:
gx =gy W
out.append(ch.functions.cast(gx, x.dtype))
if 1 in indices:
gW =gy.T @ x
out.append(ch.functions.cast(gW, W.dtype))
if 2 in indices:
gb = ch.functions.sum(gy, axis=0)
out.append(ch.functions.cast(gb, W.dtype))
return tuple(out)

Listing 3: Backward pass of a vanilla linear node.

(1953

done directly after each of the “if * in indices:” lines. First is with respect to . Since
partial derivatives are

and the required output requires summing over index i with weights specified by -, then
mathematically we should compute 47 TW. This is precisely what is being computed in the line
with gy @ W, noting that gy corresponds to . Next, the case of differentiation with respect
to W is essentially the same; we have

0
Oy B
aw — |

_0_

where all but the ith row are zero. Since we need to sum over the index ¢ and multiply by the
elements of A, mathematically the final output should be the () x P matrix

ne

YQT
This is exactly what the line with gy.T @ x is computing. Finally, for differentiation with
respect to b, since we have
Jyi
ob

=(0,...,1,...,0)

15



where the ith element is 1 and the rest are non-zero. Summation over ¢ yields a desired final
output of X itself. Note that in the code above, we have sum(gy, axis=0). If gy (i.e., A)
has shape 1 x @, then since we’ve specified summation over axis=0, the function will properly
return the desired A as we expect; the reason for this summation will be discussed below.

Some readers may be wondering exactly what gy is, and what its shape is. Let us take
each of these questions one at a time.

3.2.1 What is gy anyways?

First, regarding what gy is, note that gy is taken from the first element of grad_outputs, which
is a tuple. What is grad_outputs supposed to contain? From the official documentation on
the backward () method of the FunctionNode class, the content of grad_outputs is “gradients
with respect to the output variables.” What is being differentiated, and what are the output
variables? From the perspective of just one lone node, it is just “some function,” and the
question of what is being differentiated does not matter because all computations involving
that function are already assumed to be complete. Regarding what the output variables are,
this refers to the output of this node. More explicitly, the content returned by forward(),
which is in this case (y,). Of course y is multi-variate, but since we return just one such
object, this counts as one output variable. This is why grad_outputs has only one element
in it (in our case above). Going back to the Chainer rules for the backward pass given above,
things become more clear. The current node implements some y = f(x), and if F' is “some
function” of the outputs y, then we may more naturally write v; = 0F/0y;, meaning that the
output of the function node can be re-written

. EQ: OF dy;

7=1
_oF
N ij

dy; w;

since the inputs « only impact the function F' through the outputs y = f(x), by definition.
Recalling our algorithmic differentiation examples in sections 1 and 2, this should be a familiar
sight: Chainer forces the backward () method of any function node to return the intermediate
partial gradients (of some function) taken with respect to the inputs to the function node.

3.2.2 What is the shape of gy?

Next, we consider what the shape of gy is. First, recall that gy corresponds to «y, the partial
derivatives with respect to the node outputs. Following the simple rules highlighted above
(summarized from the official documentation), the shape of gy must match the shape of y,
which has @) columns, and one would infer from our exposition thus far that it would have
1 row. On the other hand, in our code, the summation of gy over axis=0 seems to suggest
that there may be situations in which gy has more than one row. What’s going on here?
What’s going on here? The answer is very simple: the function has been designed to be able
to handle mini-batches.5 That is, the x here need not be 1 x P, but can rather be N x P,
housing a set of inputs x1, ...,y stacked along the first axis. Going back to the forward pass
definition in forward(), since x will in general be treated as an n x d array, the output y will
in correspondingly be N x k using the above code as-is. Thus instead of writing y = W,

SThis is described explicitly in, for example, the official documentation for chainer.functions.linear.
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to describe the forward pass operation, it would clearer to write Y = XW7, where W is as
before, and X has shape N x P.

With these points clear, the answer to the question regarding the size of gy is immediate:
since the shape of y is N x @, and gy corresponds to the partial gradients with respect to y,
naturally the shape of gy must also be N x Q.

3.2.3 How to aggregate?

While the question of shape is clear, it raises a new and interesting question about how to
aggregate the partial gradients over the batch. For each i € [N], one can consider the map
y; = Wa;, and obtain a partial derivative which depends on x;. Computing all of these, we
will end up with N partial derivatives of shape () x P, one for each data point in the batch.
However, the rules of backward () require that function return a partial derivative of the same
shape as W, namely @ x P. Thus, these N partial derivatives must be somehow aggregated
into one final representative value. What aggregation method is being used in the above code?
The simplest possible approach: summation over the mini-batch. This can be observed clearly
in the example code above for both gW and gb computations. On the other hand, since gx will
need to be of the shape N x P, there is no need to do any aggregation there.

In virtually all libraries which include back-propagation functionality, the method of aggre-
gation over mini-batches is by default set to summation, and in most cases the back-propagation
sub-routines in fact assume this. This is of course natural, since summation works very nicely
for the canonical machine learning setting we described in section 2, in which we use empiri-
cal risk minimization via steepest descent as our learning algorithm, where summation of the
gradients over the data set is required.

On the other hand, Chainer is useful in that it gives the programmer the freedom to
aggregate in any way he/she chooses. This means we can actually work with the individual
gradients, giving us the freedom to, for example, identify outliers and either ignore them, or
mitigate their impact. In contrast, naive summation gives equal weighting to all points, and
thus when used in a learning algorithm to determine update direction, can easily lead the
learner astray. Trying to combat this is the basic idea of recent “robust gradient descent”
techniques studied in the literature [3, 2, 4]. In the remaining two sections, we introduce
a standard robust gradient descent strategy, and show how it can be implemented for feed-
forward neural networks to great effect when the data may be contaminated with outliers.

4 Robust gradient descent

4.1 The basic idea

In most modern machine learning problems, the usual formalism used for evaluating off-sample
generalization is the risk minimization framework. The risk incurred by a particular candi-
date parameter is the expected loss, over the random draw of data from the true underlying
distribution. Most learning problems can be reduced to selecting a parameter w (could be a
vector, a set, a function, etc.) from a collection of candidates. The quality of any candidate is
quantified in a pointwise fashion using a loss function I(w; z) for each candidate w and possible
data value z. The risk is defined R(w) = El(w; z), where expectation is taken with respect
to z. We are given access to a sample z,...,2zy, and [ is known, but since the underlying
distribution is unknown, the true objective R(-) will always be unknown. Based on this n-sized
sample, the goal is to find a candidate w such that R(w) is small enough, with large enough
probability over the random draw of the sample.
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If the risk were known, then the problem becomes an optimization problem, rather than
a learning problem. For simplicity, assume the risk is differentiable, and that w € R”. With
knowledge of the risk, one could iteratively tackle this problem using

'w>(kt+1) = wzkt) - Oég(wzkt)%

where g(w) := (OR(w) /0w, ...,0R(w)/0wp). Of course, this is an idealized procedure, since
we can never know the true data distribution, meaning R and thus g are always unknown. As
such, in practice, we use the sample to approximate R and g, subsequently feeding back this
information which, albeit incomplete, is useful for minimizing the risk. One can approximate
R based on location estimates using the loss values l(w;z1),...,l(w;2zy), but if we want
gradient information, then it may be more efficient to not bother with approximating R,
and to just go straight for an approximation of g. This can be done with the loss gradients
Vwl(w; z1), ..., Vyl(w; zx), based on which we construct an estimate g ~ g, which is then
fed into an iterative update:

W41) = Wiy — A G(W)),

As discussed in section 2, the standard approach is just to use the empirical mean of the risk
gradient, namely to update using

1N
gw) = N Z Vwl(w; z;).
i=1

However, when the data may be heavy-tailed and susceptible to outliers, a few bad data points
can lead the iterative update far away from the ideal path. As such, in recent years, interesting
work has been done on robust gradient descent methods. One of the earliest proposals was
made in a 2017 pre-print by the author [3], using a simple strategy of building per-coordinate
M-estimators to construct a robust gradient estimate. That is, define

- n "(w; z;) — 0
j(w) = argmian (lj(’)> , j€[D]

1S —— s

where s > 0 is a scaling parameter, l; = 0l/0wj, and p is a smooth, symmetric, convex function
that is quadratic around its minimum (at zero), and linear in the oo limit. The estimate
is then just g(w) = (6;(w),...,0p(w)). A fixed-point update can be used to compute these
M-estimates quickly in an iterative fashion, for any given w. A more recent proposal comes
from Prasad et al. [4], who apply the “median of means” strategy to gradient descent. That
is, partition the data set into K disjoint blocks as [n] = Z; U --- UZk and take the median of
block means:

K
g(w) = argmin » _ [lu — gi(w)]|
v k=1

R R
g(w) = IZ| Z Vil(w; z;).

1€Ty

Here the high-dimensional median is the so-called geometric median, minimizing the sum of
the distances, a quantity which can be computed accurately using a fast iterative procedure.
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4.2 An application to neural networks

Let us consider how to implement a robust gradient descent strategy in the case of neural
network models. In the end, we are interested in the sensitivity of the losses I(w; z) to the
weights w, and the dependence of the loss on the weights is only through a finite number of
intermediate computations. Writing the output of these operations as u1,...,u;, € R, for any
individual weight w, we have that

ol(w; z) i/‘[: Ol(w; z) Oup,
ow = Oup Ow '
This partial gradient can be obtained for every data point z1, ..., z,, and assuming that these

are computed individually, the partial gradients can be fed into a sub-routine for robust location
estimation. As a general-purpose procedure, still assuming w € RP, consider the following: at
each step ¢ in the iterative routine, select weight indices Z(;) C [D] to be estimated in a robust
fashion (allows for Iy = ). Making the update more explicit, at each step we update as

’l/L\)(t+1) = @(t) — a ROBGRAD (1?7(@,1(0) s (1)

where the details of ROBGRAD are specified in Algorithms 1. For all the specified weights, the
partial derivatives are passed to a sub-routine called ROBUSTIFY. While any number of robust
estimation procedures could be used here, for concreteness and clarity of this tutorial, we pro-
vide an example where we carry out soft truncation (after standardization) of the observations.
We use the function

u—ud/6, —vV2<u<+2
Plu) = 2v2/3,  u>+2 (2)
—2v2/3, u< —V2

for truncation, and set the scaling parameter s > 0 based on optimizing concentration inequal-
ities (see Holland [2] for details), where parameter ¢ can be safely fixed at say J = 0.005.

Example: layer-wise robustification It remains to actually implement this procedure.
While the details will differ slightly depending on the nature of the model being used, here we
provide an illustrative example for fully-connected feed-forward neural networks. Recall that
in section 3.2, we illustrated how the Chainer development team implemented the backward
pass of a fully-connected layer in a typical neural network, i.e., the operation € — W + b,
where we are interested in partial derivatives with respect to W and b. We also mentioned how
the core FunctionNode object was designed such that per-observation gradients are aggregated
via summation, but commented on the fact that this is not the only way to do it. Since the
robust gradient descent strategies highlighted above require a different method of aggregation,
here we show how modifying a few lines lets us easily robustify this node. The forward-pass is
identical to List 2 given in section 3.2, and thus we only show the backward pass here in List
4.

The basic structure is very similar to the vanilla linear layer; all one needs to do is replace
the operations which sum over the data with a call to self.robustifier that takes the per-
point gradients, and outputs a robust vector estimate of the proper form (this corresponds
to Algorithm 2). Note that with the implementation given in List 4, we are robustifying
entire layers at once. When constructing the network, simply specify which layers are to be
robustified, and replace the default function node (as seen in our earlier example, Lists 2 and
3) with one that has a built-in robustification sub-routine, as in List 4.
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Algorithm 1 RoBGRAD

inputs: candidate w, weight index 7
for j=1,...,D do

M ol(w; ;) Oum

9ji = . € va
o mz::l Ouy,  Ow;
if j € 7 then

g; = ROBUSTIFY ({gj,i}i]il)

else
1N
9 = N > 9
i=1
end if
end for
return: (gi,...,9p)

Algorithm 2 ROBUSTIFY: Robust mean estimation sub-routine

inputs: data z1,...,xz,, confidence 0 < § < 1
j:lzn:xz o2 = 1 Zn:(xi—i)Q P
n=" n—14 ’ 2log(6-1)
f—siw(@), Wherefizxi_fforie[n].
n = s o

=1

return: oz +

5 A complete demo: Iris data with noisy inputs

We begin with one of the most popular and simple pattern recognition tasks, and make a few
modifications as described below. We start with the Iris data set of R.A. Fisher.” This data
(originally four features) is projected to a plane using the principal components obtained from
the training data. This data is then normalized to the unit square. Finally, a small fraction of
the data, selected randomly, is perturbed by the following procedure. Let & be the empirical
mean of the training set {x;}" ;. Let 02 = var{|x; — Z||};. Let k be a multiplicative factor
we set freely. Write r := ko /|| — Z||. The perturbation from & — & is

z=(1+r)x—rz.

Geometrically, consider a circle centered at  with radius ko, and the line upon which both
and Z rest. Of the two points where this line intersects the circle,  corresponds to the point
farthest from x. See Figure 3 for an illustrative example.

For each trial, from the 150 points in the full data set, we randomly select n = 100 points
for training, with the remainder used as a test set. The input noise procedure above is applied
to a randomly selected subset of the training data, of size equal to 2% of sample size n. The
variance factor is set to k = 10 to simulate an arbitrarily large perturbation to a tiny fraction
of points.

"https://archive.ics.uci.edu/ml/datasets/iris
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def backward(self, indices, grad_outputs):
if len(self.get_retained_inputs()) > 2:
X, W, b = self.get_retained_inputs()
else:
x, W = self.get_retained_inputs()
gy = grad_outputs[0]
k, d = W.shape
out = []
if O in indices:
gx =gy CW
out.append(ch.functions.cast(gx, x.dtype))
if 1 in indices:
for i in range(k): # Loop over output dimension.
gradsW = x.array * np.take(gy.array, [i], 1)
gWli,:] = self.robustifier(x=gradsW)
gW = ch.Variable(gW)
out.append(ch.functions.cast(gW, W.dtype))
if 2 in indices:
gb = np.zeros((k,), dtype=W.dtype) # start as ndarray.
gb = self.robustifier(x=gy.array).flatten()
gb = ch.Variable(gb)
out.append(ch.functions.cast(gb, W.dtype))
return tuple(out)

Listing 4: Backward pass of robustified linear node. Compare with List 3.

Regarding the methods used, first we describe the model. As a typical model, we consider
a feed-forward neural network with fully-connected layers. There are two hidden layers, each
with 10 units. The output layer has no activation function (i.e., the signals are passed as-
is), and all intermediate layers are rectified using f(u) = max{u,0}. In our demonstration,
we compare two algorithms: vanilla gradient descent using the empirical mean of the loss
gradients (denoted deep), and robust gradient descent using the procedure described in section
4.2 (denoted deep-rob), where only the weights contributing to the first hidden layer are
estimated in a robust fashion. Both algorithms have a fixed step size of & = 0.5, and are run
for 1000 iterations.

Our demonstration here runs 20 independent trials, computing average performance over
the trials for each iteration in the algorithm updates, counting the cost in gradients computed.
The training and test performance of these two competing algorithms are given in Figure 4.
While the robustified version takes a bit longer to kick in, the negative impact of the input
noise is clearly mitigated using the robustified procedure, as we would expect.

Breakdown of demonstration code

o demo.ipynb: includes the source code for running the above experiments (and executing
update (1) above), as well as creating the final figures.

o config.py: configuration file, a few non-crucial constants are set here.
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Figure 3: Ilustation of the two-dimensional Iris data set with input noise set using factor
k = 10. Left: data after projection. Center: projected data after normalization, with the ball
of radius ko centered at the sample mean. Right: data after random perturbation.
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Figure 4: Results of classification under noisy inputs, averaged over 20 trials. Left: training
data. Right: test data.

o get_model.py: definition of the model/algorithm pair used by the two competing meth-
ods of interest.

e helpers.py: some helper functions, including the 1 function used for soft truncation.

e models.py: key definitions of neural network models, starting from FunctionNode class
definitions and creating subsequent Link and Chain objects.

e robustify.py: implements the sub-routine contained in Algorithm 2.
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