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Some useful references

I Introduction to linear maps: Axler (1997, Ch. 3)

I Metric space of linear maps: Rudin (1976, Ch. 9)

I Excellent review of matrix basics: Horn and Johnson (1985,
Ch. 0)

I Very accessible matrix algebra; basic identities, inequalities:
Magnus and Neudecker (1999, Ch. 1–3,11)

I Invariant quantities: Axler (1997, Ch. 10) (note high dependency
on previous chapters)
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Lecture contents

1. Linear transformations and their classes

2. Transformations and space structure

3. Matrices and their role in the theory
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Linearity: from sets to functions

The “stage” for our current theory is vector spaces U,V,W with
common field F, assumed R or C.

Our focus shifts from sets with a linearity property to functions with a
linearity property.

Defn. We call T : U → W a linear transformation (or map) when
∀ u, u′ ∈ U, α ∈ F,

T(u + u′) = T(u) + T(u′)

T(αu) = αT(u)

(*) The naming is natural; T maps any linear combination of say
u1, . . . , um ∈ U to a linear combination of their maps
T(u1), . . . ,T(um).
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Linearity: from sets to functions

Some additional notation:

Denote by L(U,W) the set of all linear maps from U to W,

L(U,W) ..= {T : U → W;T is linear}.

When T ∈ L(U,U), call T a linear operator on U.
Denote by L(U) ..= L(U,U).

Linear operators are without question the key focus of LA.
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Linear maps and bases

The bases of domain/co-domain of linear maps plays a key role.
Let BU = {u1, . . . , um} be a basis of U.

Example. (*) Linear maps on U are completely determined by where
they map the vectors of BU . That is, for linear maps S,T ∈ L(U,W),

S(ui) = T(ui), i = 1, . . . ,m ⇐⇒ S = T.

Example. (*) Similarly, given arbitrary m vectors w1, . . . ,wm ∈ W, the
only linear map T ∈ L(U,W) which satisfies T(ui) = wi, i = 1, . . . ,m
is that defined

T(u) ..= α1w1 + · · ·+ αmwm, ∀u ∈ U

where u = α1u1 + · · ·+ αmum.
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Various linear maps

(*) For A ∈ Rm×n, the map S(x) ..= Ax is S ∈ L(Rn,Rm).

(*) If P(R) is set of polynomials on R, note

T(p) ..=

∫ b

a
p(x) dx satisfies T ∈ L(P(R),R)

T(p) ..= p′′(·) satisfies T ∈ L(P(R),P(R))

(*) Counter-example: for A ∈ Rm×n, the map defined S(x) ..= Ax + m
for m 6= 0 is not linear, i.e., S /∈ L(Rn,Rm).

(*) For x = (x1, . . . , xn) ∈ Fn, note T(x) ..= (xπ(1), . . . , xπ(n)), where π
is an arbitrary permutation, is T ∈ L(Fn).

(*) T defined (Tp)(x) ..= βx3p(x) for fixed β ∈ R, is T ∈ L(P(R)).
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Various linear maps (more)

(*) All linear operators on dim-1 spaces are simply scalar
multiplications.

(*) Additivity is not a superfluous requirement; find a map T : R2 → R
such that T(αx) = αT(x) but T /∈ L(R2,R).

(*) Extensions of linear maps. Let U ⊂ V be a subspace, and
T ∈ L(U,W). Construct a map T ∈ L(V,W) such that
T(u) = T(u), ∀ u ∈ U.
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Classes of linear maps
Linear spaces come in many varying forms.
With standard algebraic operations, L(U,V) is yet another example.

Example. (*) If U,V are vector spaces on field F, define operations
for arbitrary S,T ∈ L(U,V) by

(αT)(·) ..= αT(·), ∀α ∈ F
(T + S)(·) ..= T(·) + S(·)

Consider what the additive inverse/identity are, recalling in particular
VM.5 from Lec 1, and show L(U,V) is a vector space on F.

What is dimL(U,V)? This motivates some new tools.

(*) If F is R or C, note that the “operator norm”

‖T‖ ..= sup
‖x‖2≤1

‖T(x)‖2

is a valid norm on L(Fn,Fm).
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“Products” via compositions
A quasi-multiplication operation is naturally defined between elements
of L(U,V) and L(V,W).

Defn. For T ∈ L(U,V), S ∈ L(V,W), we define the product ST by
the composition

(ST)(u) ..= S(T(u)), ∀ u ∈ U.

(*) As one would hope, ST ∈ L(U,W).

(*) Extends naturally to general case of m ≥ 2 multiplicands, i.e.,
where T1 ∈ L(V0,V1),T2 ∈ L(V1,V2), . . . ,Tm ∈ L(Vm−1,Vm).

(*) The product is almost like that seen on fields. Prove:
I Analogue of associativity of multiplication on fields (FM.3).
I Existence of multiplicative identity, i.e., there exists I ∈ L(V,W)

s.t. IT = T for all T ∈ L(U,V), and vice versa.
I But commutativity need not hold, i.e., ST need not equal TS.
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Transformation-induced structure

T ∈ L(U,V) induces all sorts of interesting structure to U,V .

Defn. The nullspace (or kernel) and range (or image) of T are

null T ..= {u ∈ U : Tu = 0}
range T ..= T(U) ..= {v ∈ V : Tu = v, u ∈ U}

The structure we promised is easily observed.

(*) Both null T and range T are subspaces of U and V .

(*) Let D ∈ L(P(R)) be the derivative operation. What is null D?

(*) Same D but now D ∈ L(Pk(R)), where Pk(R) restricts the
polynomials to order k > 0 or less. What is range D?
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Transformation-induced structure
The key structural theorem for T ∈ L(U,V) is as follows.

Thm. (**) Let U be dim U <∞. Then, dim range T <∞ and

dim U = dim null T + dim range T.

This is a huge generalization of the key points of G. Strang’s
“fundamental theorems.”

Example. (*) Let A ∈ Rm×n. Define T(x) ..= Ax, S(x) ..= ATy. Then
note

range T = col A = row AT , range S = col AT = row A

and of course the nullspaces coincide with the usual nullspace of the
matrices. The rest is just preservation of rowspaces in reducing to
row-echelon form. The “rank” is just rank A = dim range T .
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Transformation info encoded in subspaces
A review of basic terms.

Defn. We call a map T : U → V injective if

u 6= u′ =⇒ T(u) 6= T(u′),

and surjective if range T = V .

If both, we call T bijective, or say it is a one-to-one mapping from U
onto V .

(*) If T ∈ L(U,V) is injective and {u1, . . . , uk} ⊂ U is independent,
then {T(u1), . . . ,T(un)} ⊂ V is independent. What about if not
injective?

(*) Similarly, if [{u1, . . . , uk}] = U and T is surjective, then
[{T(u1), . . . ,T(uk)}] = V . What if not surjective?
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Transformation info encoded in subspaces

The structural results furnish handy conditions for these properties.

Assume general T ∈ L(U,V).

(*) T injective ⇐⇒ null T = {0}.
(*) Thus injectivity equivalent to dim U = dim range T .
(*) If dim U > dim V , then T cannot be injective.
(*) If dim U < dim V , then T cannot be surjective.
(*) Thus, have ∃ surjective T ∈ L(U,V) ⇐⇒ dim V ≤ dim U.

Let T ∈ L(Fn,Fm). Statements about generalized linear systems
follow naturally from these results:

(*) In terms of m and n, what can we say about the existence and
uniqueness of solutions to T(x) = 0 and T(x) = b, x ∈ Fn, b ∈ Fm?

13



Invertibility of linear maps

Defn. We say T ∈ L(U,V) is invertible if ∃T−1 ∈ L(V,U) such that

T−1T = I ∈ L(U)

TT−1 = I ∈ L(V)

where I is the identity map on the respective spaces.
Note: we are requiring T−1 be linear.

(*) Justify the notation T−1; show the inverse, if it exists, is unique.

(*) The following fact should be verified.

T is invertible ⇐⇒ T is bijective

The key to ⇐= direction is proving the inverse is linear.
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Basic isomorphism theorems

Defn. If exists T ∈ L(U,V), T invertible, then we say U and V are
isomorphic.

(*) If U,V are isomorphic, then

dim U <∞ ⇐⇒ dim V <∞

(*) Let dim U, dim V <∞. Then

U and V isomorphic ⇐⇒ dim U = dim V.

This important basic fact says we can always find invertible linear
maps between any finite-dim U,V of equal dimension.
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Specializing to linear operators
Things often become easier when we focus on linear operators,
namely T ∈ L(U).

(*) Assuming dim U <∞, the following are equivalent:

(1) T is invertible
(2) T is injective
(3) T is surjective

The finite-dim requirement is not vacuous:
(*) Define T ∈ L(P(R)) by (Tp)(x) ..= 5x3p(x). Note injectivity need
not imply surjectivity.

(*) For U on F with dim U <∞ and S,T ∈ L(U), we have:

ST invertible ⇐⇒ S,T both invertible

ST = I ⇐⇒ TS = I

T = αI, some α ∈ F ⇐⇒ ST = TS, ∀ S ∈ L(U)
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Matrices as arrays of field elements
Defn. In general, a m× n matrix B on field F is simply an array,

B =

b11 · · · b1n
...

. . .
...

bm1 · · · bmn

 , bij ∈ F

with addition/multiplication operations defined.

Some notation:
[bij] ..= B. Let bi be ith row entries; b(j) are jth column entries.
Recall for B,B′ ∈ Fm×n, C ∈ Fn×l, x ∈ Fn, α ∈ F,

B + B′ = [bij + b′ij]

αB = [αbij]

Bx = x1b(1) + · · ·+ xnb(n) = (bT
1 x, . . . , bT

mx)

BC =
[
Bc(1) · · · Bc(l)

]
=

bT
1 C
...

bT
mC

 .
17



The many faces of matrices

Matrices are quite multifaceted; in particular, we’re interested in:

I Matrices as linear maps
I Matrices as representations of linear maps

The first is easy.
Already showed B ∈ Fm×n specifies a map in L(Fn,Fm). Countless
matrix identities and inequalities are well-known and very useful
(Magnus and Neudecker, 1999).

The latter is more subtle.
The basic idea is that there exist equivalence classes of matrices
unified by a unique “underlying linear map” whose characteristics
specify properties of all the matrices in the equivalence class.
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Matrix representations of abstract objects
Let T ∈ L(U,V), dim U, dim V <∞, and fix bases
BU

..= {u1, . . . , un},BV
..= {v1, . . . , vm}. Recalling

T(uj) = a1jv1 + · · ·+ amjvm, 1 ≤ j ≤ n

uniquely represents each T(uj) ∈ V , the scalars aij completely specify
T .

Defn. Given the above discussion, we define

M(T;BU,BV) ..=

a11 · · · a1n
...

. . .
...

am1 · · · amn

 ,
called the matrix representation of T .
If U = V , denote M(T;BU) ..= M(T;BU,BU).

(*) For fixed bases, note map T 7→ M(T) ∈ Fm×n is a bijection.
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Matrix representations of abstract objects
Let T ∈ L(U,V), S ∈ L(V,W). Fix bases BU,BV ,BW .

(*) Natural properties hold; the representation of the product is the
product of the representations:

M(ST;BU,BW) = M(S;BV ,BW)M(T;BU,BV)

Things extend naturally to vectors. For u ∈ U, define

M(u;BU) ..=

α1
...
αn


where u = α1u1 + · · ·+ αnun is its BU expansion.
(*) Then handily, verify

M(T(u);BV) = M(T;BU,BV)M(u;BU).
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Additional properties of T 7→ M(T)
(*) First, note Fm×n is a vector space. What is dimFm×n?

(*) Then, note for U,V on field F, and M defined by
T 7→ M(T;BU,BV) for fixed bases, we have linearity, i.e.,

M ∈ L(L(U,V),Fm×n)

and furthermore M is invertible.

(*) Using this, prove

dimL(U,V) = dim(U) dim(V).

(*) For T ∈ L(Fn,Fm) and M(T) = [cij] ∈ Fm×n wrt standard bases,

T(x) = M(T)x = x1c(1) + · · ·+ x1c(n), ∀ x ∈ Fn.
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Matrix representations of abstract objects

Why is this useful? Fixing bases, we may equivalently consider

T(u) = v ∈ V or M(T(u)) = M(T)M(u).

The former is abstract (u, v might be functions, etc.).
The latter is concrete (typically F is R or C).

This idea is central to linear algebra!

It says some U,V and U′,V ′ can be very different, yet the
transformations L(U,V) and L(U′,V ′) are fundamentally linked.

This “link” is explicitly captured by matrix representations.
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Links between genuinely distinct spaces
Example. (*) Consider T ∈ L(Pm(C),Pm+2(C)) and
S ∈ L(Rm,Rm+2) defined for β ∈ C by

(Tp)(x) ..= βx2p(x), p ∈ Pm(C)
S(u) ..= (0, 0, βu1, . . . , βum), u ∈ Rm

With respect to the “standard bases” of each space, verify

M(T) = M(S) =



0 0 0
0 0
β 0
0 β
...

. . .
0 0 · · · β


,

a (m + 2)× m complex matrix.
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Some of the key questions of LA

Our next natural questions touch some of the fundamental objectives
of linear algebra.

Let T ∈ L(U,V), with associated matrices

A ..= M(T;BU,BV)

A′ ..= M(T;B′U,B
′
V).

What information about T can we decode from A and A′?

Is this information consistent between A and A′?
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Decoding information from matrix representations

Defn. Let V be a vector space on F, with dim V = n. Given G ∈ Fn×n,
if there exist bases B1 = {b1, . . . , bn},B2 = {b′1, . . . , b′n} such that

G = M(I;B1,B2) =
[
M(b1;B2) · · · M(bn;B2),

]
then we call G a change-of-basis matrix on V from B1 to B2.
We shall often denote G1,2

..= G in this case.

(*) Every invertible A ∈ Fn×n is a change of basis matrix.

(*) Conversely, every change of basis matrix is invertible, easily using
the fact I = M(I2;B,B) = M(I;B,B′)M(I;B′,B).

The above facts are very important. Now we look at nomenclature.
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Decoding information from matrix representations

(*) First note importantly that if G1,2 is a change of basis matrix on V
from B1 to B2, then

G−1
1,2 = G2,1.

(*) With this, one may readily confirm

M(T;B1) = G2,1M(T;B2)G1,2.

Defn. We call two square matrices A,B ∈ Fn×n similar, denoted
A ∼ B, if there exists a COB matrix G such that

A = G−1BG.

(*) Note similarity “∼” is an equivalence relation (i.e., check symmetry,
reflexivity, transitivity).
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Decoding information from matrix representations

So, in the special case of operator T ∈ L(U), we have

M(T;B) ∼ M(T;B′)

for any bases B,B′.

(*) Thus, if we know A = M(T;B1), and some A ∼ A, then it is
guaranteed there exists a basis B2 s.t.

A = M(T;B2).

Hence the equivalence class of matrices similar to M(T;B1) can be
considered the class of matrices with “underlying map” T .
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Decoding information from matrix representations
It is well-known that similar matrices A ∼ A′ have many “invariants,”
such as:

I det A = det A′

I trace A = trace A′

I A and A′ share eigenvalues
I A and A′ share a characteristic polynomial
I The same “canonical forms” (sparse, convenient forms)

These facts are very nice for decoding information about two distinct
matrices (since knowing similarity is sufficient).

However, this tells us little intrinsic information about T itself!

Can we define invariants in terms of just T that coincide with the
invariants of its matrix representations?

The answer is yes; this will be handled in Lecture 3 mainly.
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Issues with more general arguments

All the key ideas we just briefly introduced related to linear operator
T ∈ L(U), with square matrix M(T;B). Which assumptions are
critical?

The deepest results are for operators only. Thus
T ∈ L(U,U) = L(U).

Of course this implies for any bases B,B′ of U that M(T;B,B′) is
square, but that is not enough; we are interested in matrix
representations M(T;B,B) only (save for the COB matrix).

The reason for this is in the next example.
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Issues with more general arguments
Example. (*) Let T ∈ L(U) with n× n matrix

M(T;B1,B2) = [aij],

and let A′ be the same as A, save for the kth row, which is defined

a′k ..= ak + λal,

that is, by an “elementary operation” on A. Find a basis B′2 such that

A′ = M(T;B1,B′2).

Properties such as trace and determinant need not be preserved over
such operations, and extensions as above are infeasible.

(*) Rank is interesting; recall it is preserved across elementary
operations (which need not preserve similarity). It is also preserved
across similar matrices, i.e., A ∼ A′ =⇒ rank A = rank A′.
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